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With large librations of molecules, the anharmonic contributions to the temperature factors of the atoms are 
described by means of the cumulant expansion of the temperature factor. This is done for a general crystal 
metric and for any (no) site symmetry of the molecule. Two assumptions are made: (1) The librations of the 
molecule are harmonic. (2) There is one point --p in the molecule which can be chosen as the coordinate origin, 
and for which the translations of the molecule are simultaneously harmonic. The cumulants are calculated 
up to and including the fourth moments of librations and translations, and are represented as functions of the 
translation tensor T, the libration tensor L, the correlation tensor S and the coordinate origin -p.  The TLSp 
model of the rigid-body motions for large librations contains 24 parameters which can be determined from 
diffraction data. 

1. Introduction 

With large librations of molecules, the atoms do not 
move along a straight line through their equilibrium 
position, but rather along a circle. Hence, in this case, 
the harmonic approximation of the nuclear motions no 
longer holds, and the temperature factors must be 
formulated so as also to contain the anharmonic 
contributions of the nuclear motions. This was first 
done by Willis & Pawley (1970) and Pawley & Willis 
(1970) - hereinafter referred to as P & W. P & W 
derived the temperature factor by calculating the 
thermal average (exp2nih .u) .  This approach is 
cumbersome, and its use imposes the following limit- 
ations on their result: (1) The equations are only valid 
in that Cartesian coordinate system in which the 
libration tensor L is diagonal. (2) The molecule must 
have site symmetry 1. (3) The translations t and the 
librations to of the (rigid) molecule are harmonic, i.e. 
they are Gaussian distributed. (4) The atomic motions 
are expressed up to and including the fourth moments 
of the librations to. 

The first limitation was eased by Johnson (1970a) 
who gave a formulation which is valid in any Cartesian 
coordinate system. 

The limitations (1) and (2) are stringent in actual 
practice, and we shall eliminate them in this paper; 
i.e. we shall derive temperature factors of the atoms 
for large librations of molecules in a general crystal 
metric and for any (no) site symmetry. The limitation 
(3) can also be eliminated in principle, but not in 
practice, since then there are so many parameters that 
they cannot be determined in a refinement. The 
limitation (4) could also be weakened by employing the 
methods used in this paper, and the anharmonic con- 
tributions could be collected up to sixth moments of t 

and to, but the expressions obtained would be very 
lengthy. In view of the present experimental accuracy, 
we do not consider the limitations (3) and (4) to be 
stringent and we shall retain them. 

In this paper we make use of the cumulant expansion 
of the temperature factor (Johnson, 1969, 1970a,b). In 
an earlier work (Scheringer, 1977) we showed that 
lattice dynamical calculations suggest that the cumulant 
expansion is the formally correct means for taking 
into account anharmonic contributions to the temper- 
ature factor. Hence, in this paper, we have only to 
determine the cumulants of the nuclear displacements 
for large librations of molecules. Since the cumulants 
are tensors and, hence, their transformation properties 
known, they can be expressed in every coordinate 
system. For this reason we shall be able to formulate 
our equations in a general crystal metric. 

2. Librations expressed in a general metric 

The amplitude u of an atom at a position x with a large 
libration about a fixed origin is given by Schomaker & 
Trueblood (1968), Willis & Pawley (1970) and 
Johnson (1970a), for a Cartesian coordinate system. In 
matrix notation it is 

= V c a r t  ) Xca r t ,  U ( ( ~ V c a r t  __ ~ l [ C a r  t T 

t~ = (sin o~)/w, ,8 = (1 - cos @~to z, 

032 2 2 ~--- CO x + 602 + O.)z, 

0 -Wz 6°0~ ) 
V c a r t  = O.) z 0 - -  • 

- - ( .Dy 0,) x 

(2.1) 
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The origin of libration is defined by the atomic coordi- 
nates x. We obtain (2.1) in a general metric if we trans- 
form from an orthonormal basis to a general basis. 
Let the transformation of the base vectors be defined by 

= G T-1 (2.2) acell acart .  

Let E be the unit matrix, g the metric tensor of direct 
space, g* the metric tensor of reciprocal space, x the 
contravariant components of the position vector in 
direct space, then we have gcart = g'art = E, and 

and 

gcen G T - 1  G - t ,  • - t  = gcell = gcell = GGr, 

Xcell = Gxca r t  , (2.3) 

G r -  ~ sign (det G), (2.4a) Q)cell = 0~Cart 

Vce n = GVcart G r. (2.4b) 

V transforms doubly contravariant to the basis a. By 
comparison of (2.4a) and (2.4b) we obtain the result 
that the components of Vce n are equal to the com- 
ponents C%eH.(det g)-l/2 (which are covariant to the 
basis a) (Hirshfeld & Rabinovich, 1966). In the 
following we omit the subscript 'cell', since we shall 
refer all equations to the crystal basis a. With (2.1-4) 
we obtain for the contravariant components of the 
vibration amplitudes 

u = aVgx -- flVgV r gx, (2.5) 

and 

0,) 2 = ¢org * to = trace (g* o~eor). (2.6) 

An important auxiliary relation which we shall often 
use to evaluate the first term of (2.5), is given by 

Vgx = --V x o. (2.7) 

V x is an antisymmetric tensor such as V, and contains 
the components gx (det g)-l/2. A further relation, which 
we shall use to evaluate the second term in (2.5), is 
given by 

VgV r = g* trace (g* o~oJ z) -- g* ~ r  g. 

= g* o r g* o -- g* o o  r g*. (2.8) 

The coefficients a and fl in (2.5) have to be expanded 
into a series in order to enable us to evaluate the 
moments of u. Hence, 

1 1 
(t = (sin o9)o9 = 1 -- - -  0.)2 + - -  ( . / ) 4  - - . .  " ,  

3! 5! 

1 
fl = (1 -- cos o9)/o92 1 1 (.02 + 094 = . . . .  _ 

2I 4I 6I "'" 

(2.9) 

3. The cumulant expansion of  the temperature factor 

With anharmonic motions the temperature factor 
should be represented by the cumulant expansion 
(Johnson, 1969, 1970a,b; Scheringer, 1977), i.e. 

T(h) = exp [2hi Zi IKi hi + 
(2n-/) 2 

2t Z 2Kiihihj 
lj 

(27ci) 3 
3I ~"  3xiYk hthjhk 

ijk 

(2n i )4  ] 
+ 4----~. ~"  'Kljkl hihjhkhl  + . . . .  (3.1) 

ijkl 

The cumulants ~ in (3.1) refer to the atomic displace- 
ments u and are tensors. With reference to a crystal 
basis, h t, hi, h~ h I are the Miller indices, h denotes an 
index-triple. The cumulants can be calculated from the 
moments of u, which we denote by angle brackets. We 
have 

I K i =  (ui>, 2Kij = (U t U j )  -- (U l) <UJ), 

3KiJ* : (u  i uJ u k) - ( u ' )  (uJ u - (u  J) (u  I u 

--(Uk)(UtU j)  + 2 ( u i ) ( u J ) ( u k ) ;  i , y , k = 1 , 2 , 3 ;  

(3.2) 

(Johnson, 1970a,b). The fourth cumulant is also given 
by Johnson; we do not include it here, since it is zero 
in the approximations (3) and (4) of § 1. 

Before we attack our main problem, which consists 
of expressing the cumulants of u by the moments of co 
and t, we list the moments of co and t. Here the approxi- 
mation (3) of § 1 is an important help. With the 
Gaussian distribution of to and t, all odd moments of 
o~ and t vanish, and the even moments are the central 
moments. The second moments are the libration and 
translation tensors respectively 

(coo~ r )  = L, (t t  r )  = T, (3.3) 

and the second mixed moment is the correlation tensor 

(tot r )  = S, (ogit j )  = SJi. (3.4) 

The fourth moments can be calculated from the second 
cumulants of to and t, i.e. from T, L and S. Generalizing 
the expressions given by Kendall & Stuart (1969) and 
Johnson (1970a), we find 

((2) i (.OjO.)k(.Ol) = LuLki + LikLjt + LuLflo 

(t '  ogjo9 o9i) = + s G, + 

(ti tJ o9k og,) = TiJ L u  + S~ S~ + S~ S~  

(t  i t j t k ogi) = T e S~ + T ik S{ + T jk S[. (3.5) 
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Since i, j ,  k, l = 1, 2, 3, at least two indices in (3.5) 
must be equal. 

Our problem, expressing the cumulants of u by the 
moments of ca and t, will be solved in three steps. 
Firstly, we consider the simple case of site symmetry 1, 
for which librations and translations of the molecule are 
statistically independent (§ 4). In the second step, we 
set aside the site symmetry of the molecule, but assume 
a special origin for describing the librations (§ 5). 
Finally, we also remove this limitation (§ 6). 

4. Cumulants  for site symmetry  ] 

Since the centre of symmetry defines the librational 
origin, we refer the atomic coordinates to it. Then 
S = 0, and the translations are harmonic with our 
approximation (3) of § 1. The anharmonic contributions 
to the cumulants of  u thus arise only from the librations 
ca, and, hence, can be represented as functions of L, x 
and V~. In the following, we do not write out expres- 
sions which lead to odd moments of ca and, hence, are 
zero. 

For the first cumulant we obtain from (2.5-6) and 
(2.9) 

IK= (U) = - - ½ ( V g V r )  gx + ~ (ca r  g,  caVgV r )  gx. (4.1) 

We use (2.6) and (2.8), calculate the moments with 
(3.3) and (3.5), and obtain after ordering of terms 

1K = --½[E trace (g* L) - g* L] x 

+ ,~(ET--  g* A)x,  (4.2) 

= [trace (g* L)] 2 + 2 trace (g* Lg* L), (4.3) 

A = L trace (g* L) + 2Lg* L, A = A T. (4.4) 

The first cumulant term in (3.1) is 2zci ~K. h. 
For the second cumulant we obtain with (2.5-6), 

(2.9) and (3.2) 

~ -- ((1 _]cat  g, ca) Vgxx T gV T) 

+ ¼(VgV T gxx T gVgV T) -- (u)(UT).  (4.5) 

We use(2.6-8), calculate the moments with (3.3) and 
(3.5), and finally obtain with A of (4.4) 

2K= Vx(L-- ]A) V r + ½[xxr trace (g* Lg* L) 

-- xx r Lg* Lg* -- (xx r Lg* Lg*) r 

+ ½g*(LxrLx + LxxrL)g*].  (4.6) 

The term VxLV~ r in (4.6) is due to the harmonic 
approximation. The second cumulant term in (3.1) is 
--2~z 2 h r 2Kh. 

Since there are three indices with the third cumulant, 
we cannot here fully express our equations in matrix 
notation. However, we still use it as far as possible. 
With (2.5), (2.9) and (3.2) we obtain 

3~uk= {-½((Vgx)' (Vgx)~ (VgV ~ gx) ~) 

- ( u i u J ) ( u k ) }  + {jki} + {k/j}. (4.7) 

With {jki} + {kij} we denote the two equivalent terms 
with indices interchanged. We use (2.7-8), calculate the 
moments with (3.3) and (3.5), and obtain after re- 
ordering of terms 

3Kuk = { - - ( V  x Lg* LVxr) U x k 

+ ½(VxBkVxT) U} + {jki} + {k/j}, (4.8) 

where the symmetric 3 x 3 matrix B k means 

Bk= (Lg*)kxr L + [(Lg*)kxrL] r. (4.9) 

The index k belongs to the metric tensor g*. (Lg*) k is 
a 3 x 1 column matrix, and x rL  a 1 x 3 row matrix. 
Obviously L appears only in the second power in 
(4.8-9). The threefold summation in the third cumulant 
term extends itself over 27 terms. Since the indices can 
be interchanged pairwise, cf. (3.2), the summation can 
be shortened according to the permutations of indices. 
For the index combination iii there is one permutation, 
for the combinations iij there are three, and for the 
combinations O'k there are six permutations (Johnson, 
1970b, Table 9.2). Our equations (4.7-8) are valid for 
one permutation of indices. 

We shall show that the fourth cumulant is zero in the 
approximations (3) and (4) of § I. In these approxi- 
mations, only the terms u = - V  x co make a contribution. 
Since the relation between u and to is linear and ca is 
Gaussian distributed, u is also Gaussian distributed. 
Hence, the fourth cumulant of u is zero. P & W and 
Johnson (1970a) also found this result, but by a more 
complicated term by term analysis of the explicit ex- 
pression for the fourth cumulant. 

In a Cartesian coordinate system (g = g* = E) and L 
being diagonal, our expressions reduce to those found 
by P & W. Note that in P & W's expressions, the 
multiplicity, i.e. the number of permutations, is 
accounted for, whereas in ours it is not. 

Johnson (1970a) remarks that the third mixed 
moment (cott) which represents a correlation term 
between translations and librations, can also contribute 
to the cumulants of u in the case of the site symmetry i. 
On the other hand, P & W found by a term analysis 
that there is no correlation between translations 
and librations. 

We comment: because of the Gaussian distribution 
of ca and t the 3rd moment (cott) vanishes. Moreover, 
with site symmetry [, the covariance matrix (cat r )  = S 
is zero. For Gaussian distributions, zero covariance 
means statistical independence. Thus, P & W's result 
is confirmed. Johnson's result, however, applies if the 
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translations and/or  librations no longer satisfy the 
harmonic approximation. 

P & W point out that the first cumulant, which affects 
the position of the atom, also contains the bond-length 
correction. Johnson (1970c) gave the bond-length 
correction in a general metric. Thus, Johnson's 
equation (A5) and our (4.2) should give the same 
result. At first glance, this is not obvious, and here we 
outline the steps for calculating one result from the 
other. Johnson lists the libration tensor in contra- 
variant components,  but in (4.2) we use covariant 
components of L. Let us denote the vector between 
the mean atomic positions by d, then we obtain from 
Johnson's  (1970c)equat ions  (A4) and (A5), and with 
L covariant, 

dcorr -: d + (2d) -~ d r g[E trace (g* L) -- g* L] d. (4.10) 

Comparison of (4.10) and (4.2) can only be made with 
the first term of (4.2), where L appears in the first 
power. In (4.2) x already denotes the thermally 
corrected coordinates. In (4.2) and (4.10), the square 
brackets are equal, and, hence, the two equations give 
the same result in the linear terms of the libration tensor 
L. 

5. Cumulants for any site symmetry 

In the case of site symmetry i, we have assumed, 
without further specification, that the translations of the 
molecule were harmonic. In doing so, it was self-evident 
that we had to assume i as the coordinate (librational) 
origin. If i is no longer given, the point is unknown 
which we have to use as origin and for which we 
simultaneously assume harmonic translations. There- 
fore, we reformulate the assumptions (3) and (4) of 
§ 1 as follows: (3a) The librations to are harmonic (as 
before). (3b) There is one origin of  libration (coordi- 
nate origin), usually unknown, for which the trans- 
lations t are harmonic. (4) The atomic motions are 
expressed up to and including the fourth moments of 
co and t. In this section we choose the origin of (3b) as 
coordinate origin (x system). The problems which arise 
with the choice of another origin will be discussed in 
§6.  

In the x system, to and t are Gaussian distributed 
and, hence, the first and third moments of to and t 
are zero. The second and fourth moments are given 
in (3.3-5). We have to calculate the cumulants of u 
from the moments (3.3-5). Since ( t )  = 0, there are no 
new contributions to the first cumulant and (4.2-4) are 
also valid in our more general case. The fourth 
cumulant of u is zero as in the case of site symmetry 1: 
In the approximation (4) we only consider librational 
contributions uHb = - V  x to. Since to is Gaussian dis- 
tributed, UHb is also Gaussian distributed and, hence, 
the fourth cumulant of u is zero. There are, however, 

new contributions to the second and third cumulant. 
In order to evaluate them, it is expedient to divide u 
with respect to translations and librations, i.e. u = t + I, 
and to express the cumulants correspondingly. We use 
the fact that the second and third cumulants are equal 
to the central moments, and thus obtain 

2xu = 2x(ti t j) + 2x(ti  l j)  + 2x(l i  t j) + 2x(li  lJ), (5. la)  

3xiJk : 3K(ti tJ t k) + 3K(ti t j I k) + 3K(ti l J t k) + 3x(l i t j tO 

+ 3x(t i lJlk)  + 3tc(litJl k) + 3x( l i lJ t  k) + 3l¢(lilJlk). 

(5.1b) 

(5.1) is valid in every coordinate system. The pure 
librational cumulants 2x(l i lJ)  and 3x(l i lJlk)  are already 
known, and calculated from (4.6) and (4.8-9) respec- 
tively. Since t is Gaussian distributed the pure trans- 
lation cumulants are also known: 2x(t i tJ)  = T U is the 
translation tensor (3.3), and 3X(titJtk) = 0. The mixed 
cumulants in (5.1) are new. Since they differ partially in 
the assignment of the indices, and since the sequence of 
the t's and l's is arbitrary there is only one new cumu- 
lant in (5.1a) and two in (5.1b). In matrix notation, 
we have 2~:(tl) = 21¢r(lt). The determination of the three 
new cumulants in (5.1) forms the remainder of this 
section. 

With ( t )  = 0, we obtain with (2.5), (2.9) and (3.2) 

2K(/t) = (It r )  = (Vgxt r )  -- ~(092 Vgxtr) .  (5.2) 

We use (2.5-7),  (3.4-5) and obtain after reordering of 
terms 

2~:(/t) = - - V x S  + ~VxS trace (Lg*) + ~ VxLg* S. (5.3) 

The first term in (5.3), --VxS, is known to be the 
harmonic contribution. The anharmonic contributions 
arise from the fourth m o m e n t  (C.OiCOjCoktl), and, hence, 
T does not occur. 

For the mixed cumulants in (5.1b) we obtain from 
(3.2) with ( t )  = 0 

3 X ( t i t J t k ) = ( t i t J t k ) - - ( l k ) ( t i t J ) ,  (5.4) 

3X(t i lJ lk)= ( t i l J l k ) - - ( l J ) ( t i l k ) - - ( l k ) ( t t l J ) .  (5.5) 

With (2.5-6),  (2.8-9) and (3.4-5),  we obtain for the 
third moments 

( t  i t j I k) = --½(t  i t J ( V g V  r gx) k) 

= - ~ t  T iJx  k trace (g* L) + 2(Srg  * S)iJx k 

- -T i j (g  * Lx) k + (g* S)ki(Sx) j + (g* S)~4(Sx)i}, 

(5.6) 
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( t  i lJ l k) = ½(ti(Vx co)J (VgV r gx) k) 

+ ½(t/(vx,~)~ (VgV T gx)J) 

= ½{[(V x S) j / trace (g* L) + 2 (V x Lg* S) J/] x k 

-- (V x S) ji (g* Lx) k + (V x Lg*) jk (Sx) 1 

+ (VxLx)Y(g* S) ki} + ½{kO'}. (5.7) 

The bracket {kO'} is equivalent to the first bracket, but 
with indicesj and k interchanged. In (5.4) and (5.5)we 
multiply out the first and second moments up to fourth- 
order terms, and finally obtain with (4.2-4) and 
(5.3-7): 

3K(ti t j l k) = --½ {2(S r g* S) ij x k 

+ (g*S)k i ( sx )  j + (g*S)kJ(Sx)i},  (5.8) 

3K(tilJlk) = ½{2[(VxLg* S)J ix  k + (VxLg* S)kixJ] 

--[{(VxLg*)J k + (VxLg*)~d}(Sx) i 

+ (V x Lx)  j (g* S) ki + (V x Lx) k (g* S) ji] }. 

(5.9) 

(5.8) is symmetric in i and j ,  and (5.9) in j and k. 
3K(ttl) depends only on S, and hc(tll) on L and S. All 
the mixed cumulants vanish for S = 0 (site symmetry 
1), which is as it should be. 

T E M P E R A T U R E  FACTORS FOR LARGE LIBRATIONS OF MOLECULES 

6. Arbitrary origin of libration 

In § 5 the coordinate origin was fixed at the point for 
which we assume with (3b) that the translations of the 
molecule are harmonic (x system). Since this point is 
generally unknown, one cannot work with the x system 
in practice. Thus, we have to look for a more general 
description. For this purpose, we define another 
coordinate system, the y system, and in this system we 
define the origin for which we assume harmonic trans- 
lations by means of the vector P. Then the coordinates 
of the x and y systems transform into each other by 

x -  p = y, y + p : x. (6.1) 

The y system can be chosen arbitrarily (e.g. the crystal 
system). The tensors T and S of § 5 now refer to the 
point -p.'[" Our task consists of expressing the cumu- 
lants of u as functions of TLS and the vector p. Here we 
make use of the invariance conditions which require 
the displacement vectors u and the cumulants of u to 
be equal in every coordinate system. We abbreviate 
(2.5) as u(lib) = Dx, and obtain the conditions 

u = t  x + D x = t y + D y ,  K x=t~y, (6.2) 

~" The transformation (6.1) of the origin is defined in accordance 
with that used by Schomaker & Trueblood (1968), Johnson 
(1970a) and Scheringer (1973). This definition implies that, in the 
y system, the point for which we assume the translations to be 
harmonic, is given by --p. 

for all cumulants of u. With (6.1-2), we obtain the 
further transformations 

ty = t x + Dp, ¢O.v--- co x = ¢o, Ly = L x -- L. (6.3) 

Hence, co and L are independent of the chosen origin, 
but t is not. With our assumption (3b), t x is Gaussian 
distributed, but, because of the term Dp, ty is not. It is 
this fact that causes the complications of the description 
in the y system. Thus, we expect that the third 
cumulant of the pure translations no longer vanishes. 
Since the fourth cumulant of u is zero in the x system, 
it is also zero in the y system. 

The cumulants of u will also be derived from (5.1). 
But now we have to insert ty = t x + Dp for the trans- 
lations, and Dy for the librations. Since the terms Dp 
which occur in the translations are formally librations, 
which we have to distinguish from the librations Dy, we 
use the notation 

( D y ) i :  li(y), (Dp) i=  li(p), i =  1, 2, 3. (6.4) 

Moreover, we omit the subscript x for denoting the x 
system, i.e. we put t x = t. In order to evaluate the 
translational parts in the cumulants, we again use the 
fact that the second and third cumulants are equal 
to the respective central moments. Since with (6.2-3) 
there are only moments and cumulants of t, Dp and 
Dy, it will be possible to express the cumulants in the y 
system by those of the x system. Hence, we can use 
fully the equations of § § 4 and 5, but we will have to 
replace x by y and p respectively. The determination 
of the cumulants in the y system forms the remainder 
of this section. 

For the first cumulant we find with (6.2-3) and 
( t ) = O  

~ : =  (l(p)) + (l(y)) -=- ~g(p) + lg(y), (6.5) 

where ~ is calculated from (4.2), with p and y in place 
of x. (6.5) simply corresponds to (6.1). 

For the first term in (5. la) we find with (6.3-4) 

bc(tiyt]) = 2K(ti t j) + 2K[ti lJ(p)] 

+ 2x[li(P) t J] + 2x[I/(p) N(p)]. (6.6) 

The first term in (6.6) is the tensor T; the following two 
terms are obtained from (5.3), and the final term from 
(4.6), with p in place of x. 

For the mixed terms in (5. la) we find with (6.2-4) 

2 i j x( tyPy)= 2K[f lJ(y)] + 2x[li(p)lY(y)]. (6.7) 

The first term in (6.7) is obtained from (5.3), with y in 
place of x; the second term from (4.6) with p in the first 
and y in the second position. 

The fourth term in (5. l a) is 

2K(ly l~)= 2~c[/i(y) P(y)I, (6.8) 

and is obtained from (4.6), with y in place of x. 
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For the third cumulant we obtain for the pure trans- 
lation term [first term in (5. lb)] with (6.3-4) 

3x(t~ t{t~) = 3K[ti tJlk(p)] 

+ 3x[ti lJ(p) t k] + 3x[ll(p) tY t k] 

+ 3X[tiP(p) lk(p)] + 3x[li(p) tJlk(p)] 

+ 3X[p(p) p(p) t k] + 3x[li(p ) p(p) lk(p)]. (6.9) 

The mixed terms in (6.9) are obtained from (5.8-9), the 
pure libration term from (4.8-9), with p in place of x. 

For the ttl terms in (5. lb), we find with (6.2-4) 

3x(t~ t{ l~) = 3x[ti t j / k ( y ) ]  + 3x[ti lJ(p) lk(y) 

+ 3x[li(p)tJlk(y)] + 3x[li(p)lJ(p)lk(y)]. 

(6.10) 

The first term in (6.10) is obtained from (5.8), with y in 
place of x; the following two terms from (5.9), where y 
is connected with the index k, and p with the index j or 
i. The final term in (6.10) is obtained from (4.8-9), 
where y is connected with k, and p with i andj. 

For the tll terms in (5. lb), we find with (6.2-4) 

3x(tiy l~ l~) = 3x[ t  i I j (y)  ik(y)] 

+ 3tc[li(p)lJ(y)lk(y)]. (6.11) 

The two terms in (6.11) are obtained from (5.9) and 
(4.8-9) respectively, with the corresponding substi- 
tutions for x. 

The pure librational contribution in (5. lb) is simply 

3K(liylJy _y/lk]: 3K[li(y) lJ(y)lk(y)], (6.12) 

and is obtained from (4.8-9) with y in place of x. 

7. T and S in the y s y s t e m  

It has been shown that in the y system the translations 
of the molecule are anharmonic, cf. (6.3). In this section 
we shall analyse the anharmonic contributions of T and 
S and see how much the centre of reaction (Schomaker 
& Trueblood, 1968; Johnson, 1970a) will become 
displaced by the anharmonic contributions to the S 
tensor. 

The translation tensor in the y system is given by 

Ty = (ty t~ )=  2K(tt) + (l(p))(Ir(p)). (7.1) 

The harmonic contribution to Ty is 

"l~t arm = T - -  V p S -  ( V p S )  T + VaLV ~, ( 7 . 2 )  

in agreement with expressions derived previously 
(Schomaker & Trueblood, 1968; Scheringer, 1973). If 

we also determine the purely anharmonic contribution 
in (7.1) we can write 

T y  = T harm + T anh (7.3) --y ~ y  , 

with 

Tanh = --~Vp AV~ + ¼{pp r y--  ppr Ag* y 

_ (ppr Ag,)r  + g,(Lpr  Lp + 2Lpp T L) g* / 

+ ~ trace (Lg*)[VpS + (Vp S) r] 

+ ~[VpLg* S + (Vp Lg* S)rl, (7.4) 

where ~ and A are obtained from (4.3-4). The trans- 
formation of T from the x into the y system is contained 
in (7.3), if we insert (7.2) and (7.4). This transformation 
is no longer linear in L and S as in the harmonic case 
(7.2) but is quadratic in our approximation (4). The 
anharmonic contribution arises from the fourth 
moments of o~ and t, and vanishes for p = 0. 

The S tensor in the y system is given by 

Sy = (e0ty r)  = (o~t r) + (colt(p)). (7.5) 

Evaluation of the moments leads to 

Sy= S + [E- -~E trace (Lg*)--~Lg*] LVp. (7.6) 

The harmonic contribution is given if we consider only 
E in the square brackets. The anharmonic modification 
consists of the two negative terms and arises from the 
fourth moments of co; it is quadratic in L in our 
approximation (4). 

(7.6) enables us to estimate the effect of large 
librations on the position of the centre of reaction. This 
is the point where the S tensor becomes symmetric 
(Schomaker & Trueblood, 1968; Johnson, 1970a). 
Since [ ] L ---- C constitutes a symmetric matrix in (7.6), 
Johnson's (1970a) procedure for determining the point 
p(S = SO can also be applied to the anharmonic case. 
Instead of L, we have to insert C in Johnson's equation 
(48). The more C deviates from L, the more the centre 
of reaction will be displaced by the anharmonic con- 
tributions. Evaluation of (7.6) with L ,  = 40 deg 2, yields 
0.99E for the square bracket; i.e. the anharmonic 
contribution only makes up 1% of the whole in this 
case. Thus, we conclude that the centre of reaction will 
usually not be displaced much by the anharmonic 
contributions to S. 

One may suppose that a simpler description than 
that of § 6 will be obtained if one first calculates Ty and 
Sy and then uses these quantities in the equations of 
§ 5. We have done this and found the results partially 
to differ from those of § 6. The reason is that ty is no 
longer Gaussian distributed and, hence, the third 
moments i j k i j (t~wjCOk) do not ( ty ty ty) ,  ( t y t ywk )  and 
vanish, but also contribute to the cumulants. Therefore, 
the calculation with T v and Sy becomes more com- 
plicated than that of § 6. 
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8. Discussion of the TLSp model 

In the preceding sections we have shown how the 
cumulants, and, hence, the temperature factors of the 
atoms, can be calculated from the rigid-body vibration 
tensors TLS and the vector p. Our description of the 
anharmonic motions of the atoms (due to large 
librations of molecules) thus constitutes an anharmonic 
TLSp model [within the limitations (3) and (4)1 which 
contains 24 parameters. In contrast, the harmonic 
TLS model contains only 20 parameters. One additional 
parameter in the anharmonic model arises from nine 
(and no longer from eight) parameters of S. With the 
equations of § 5, the components S~ and, hence, also 
trace S are fully determined. The other three additional 
parameters are the coordinates o f - p ,  since the coordi- 
nate origin for which we assume harmonic translations 
is generally unknown. In the harmonic TLS model, the 
three parameters for - p  do not arise, because the trans- 
lations are harmonic for every coordinate origin. This 
implies that, with a change of origin, T and S transform 
linearly in TLS. In the anharmonic TLSp model, how- 
ever, T and S do not transform linearly in L and S, cf. 
(7.3) and (7.5), and the translations are generally 
anharmonic cf. (6.3). 

Two unique points offer themselves which, when 
chosen as origins, may give rise to translations that are 
harmonic: the centre of gravity and the centre of 
reaction. On the usefulness of the centre of reaction 
we are careful in our prediction, since there is too little 
evidence as to where it usually lies. From its definition, 
the centre of gravity appears to be suitable as a possible 
origin (3b), if the molecule is not anchored one-sidedly 
by external forces. In the special case of site symmetry 
l, the centre of gravity coincides with [ and thus yields 
the correct value for - p .  

We emphasize that the assumption (3b) of the 
translations being harmonic for one fixed origin has 
not been proven. This statement also holds for the TL 
model with site symmetry i. The successful refinements 
with the TL model, however, seem to suggest that the 
assumption (3b) can well be made in most cases. 
Hence, we expect that anharmonic translations are in 
most cases due to large librations where the correct 
point - p  has not been found, and are not due to the 
breakdown of our assumption (3b). 

If we discard the assumption (3b) the simple 
description of § § 5 and 6 will be lost. There would be 
higher cumulants for the pure translations (10 
parameters for the third, 15 parameters for the fourth 
cumulant) and the third moments (titJogk) and 
(tiogjOgk) would contribute to the mixed cumulants, 
with 18 parameters each. The fourth moments, which 
we have calculated from TLS, (3.5), would have to be 
treated as independent variables. The moments 
(titJtkmt) and (tiogja~k091) yield 30 parameters each, 
and the moment (titJOgkWl) yields 36 parameters. 

(More parameters arise for the mixed moments than for 
the pure moments, because one has to distinguish 
between directions of space and librations/translations.) 

Needless to say, the components of TLS for large 
librations can only be determined in a structure factor 
calculation, and not from atomic vibration tensors that 
were determined in the standard harmonic approxi- 
mation. Generally, the 24 parameters TLSp have to 
be determined in the refinement. It is probably sufficient 
to calculate the derivatives for T, L and the off- 
diagonal components of S in the harmonic approxi- 
mation, and to calculate correspondingly more cycles. 
For the components S~, however, the full derivatives 
are needed, since in the harmonic approximation the 
normal matrix becomes singular for these parameters. 
If one does not wish to determine the single com- 
ponents S~, trace S = 0 is a useful constraint, although 
not quite correct (Scheringer, 1973). For determining 
the coordinates o f - p ,  the full derivatives are also 
needed, unless one is satisfied with keeping - p  constant 
at the centre of gravity. 

9. Conclusion 

For large librations of molecules, a TLSp model with 
24 parameters has been described which, in view of the 
present experimental accuracy, will in most cases 
satisfy the requirements of actual practice. The point 
- p ,  for which we assume the translations of the mol- 
ecule to be harmonic, is a unique origin in this model, 
and it is expected to lie in the vicinity of the centre of 
gravity as long as the molecule is not anchored one- 
sidedly by external forces. As a rule, the 24 parameters 
should be well-determined with good experimental data, 
as is suggested by the experience gained with the har- 
monic TLS model that already contains 20 parameters. 
However, it appears to be impossible in practice to 
eliminate the assumption (3b) since then too many 
parameters would arise which could no longer be deter- 
mined. The formulation of the TLSp model in a general 
crystal metric allows us to use the coordinates in lattice 
units and the Miller indices of the observed data, which 
makes programming easier. 

With the determination of electron density distri- 
butions in molecular crystals by means of X -  N or 
X - X (high-angle data) maps, small errors in the 
temperature factors give rise to large errors in the 
density distribution (Scheringer, Kutoglu & Mullen, 
1978). Hence, a correct description of the nuclear 
motions in these maps is of primary importance. The 
anharmonic TLSp model should here help us to proceed 
a step further. 
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Experimental Study of Disordered Mica Structures by High-Resolution Electron 
Microscopy 
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Disorder in stacking sequences of mica minerals, predominantly 1M muscovite from York, Ontario and 
biotite from Mitchell Co., North Carolina, was observed using high-resolution electron microscopy. The 
specimens were prepared by sectioning the flakes of mica in the microtome with a diamond knife, so that 
crystals were viewed down the direction parallel to the Si-O layers. Disordered sequences of the layers, as 
well as ordered crystals, are best described by citing the positions of tunnels between alkali ions lying in the 
interlayers, since these individual sites are resolved in electron micrographs of micas. An evaluation of the 
usefulness of one-dimensional lattice fringe images for studying disordered states in crystals is also discussed 
by comparing them with structure images of corresponding crystals. Intimate intergrowths of different mica 
polytypes on a scale of tens of Angstr6ms raise questions as to the definition of origins of unit cells and 
therefore polytypes. 

1. Introduction 

The structures of the mica minerals are complex and 
varied, although based on a relatively simple stacking 
arrangement. There is a sixfold multiplicity for the 
stacking of adjacent layers, resulting in a large number 
of possible stacking sequences and thus polytypes 
(Smith & Yoder, 1956; Ross, Takeda & Wones, 1966; 
Takeda, 1967; Baronnet, 1975). X-ray diffraction tech- 
niques have been a powerful means of determining 
average stacking sequences and have solved the 
problems of mica polytypes, but they are not suitable 
for studying heavily disordered stacking sequences and 
their variations within a given crystal. 

Recently, high-resolution transmission electron 
microscopy has been recognized as a powerful means 
for studying structural irregularities in crystals, par- 
ticularly linear or planar defects, occurring within one 

or a few unit cells. We have utilized this technique for 
the study of crystal defects in various oxide crystals 
(Iijima, 1971). The basis of the technique is that images 
of crystals taken under critical experimental conditions 
(focusing, crystal orientation, etc.) directly represent an 
arrangement of relatively heavy atoms, or groups of 
atoms in a projection of the structure parallel to the 
direction of the incident electron beam. Such images 
are called 'structure images' hereinafter. 

We previously reported structure images of some 
minerals (Iijima, Cowley & Donnay, 1973; Buseck & 
Iijima, 1974; Pierce & Buseck, 1976). One of the 
advantages of structure images over X-ray diffraction 
techniques, where observed quantities are averaged 
over vast numbers of unit cells, is that they allow us to 
examine local irregularities in crystals at the unit-cell 
level. This advantage was utilized to study defects and 
polytypism of enstatites (Iijima & Buseck, 1975; 
Buseck & Iijima, 1975). 


